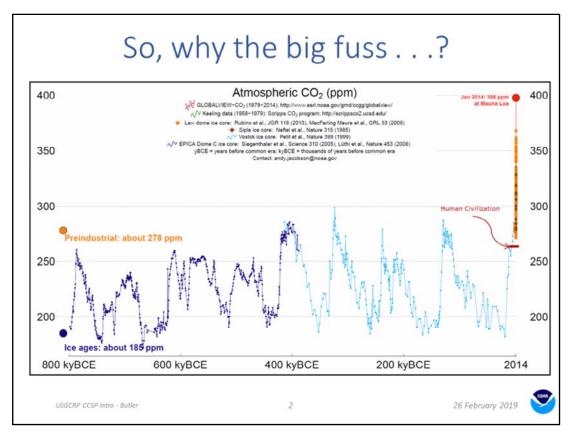
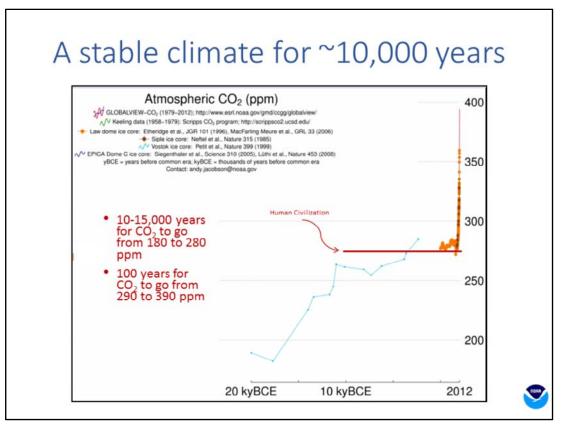
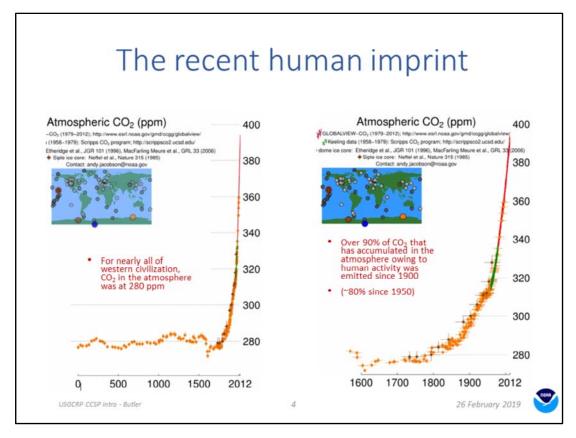

NOAA, the US Carbon Cycle Science Program (CCSP), and the Second State of the Carbon Cycle Report.


26 February 2019

James H. Butler, Director


NOAA Global Monitoring Division

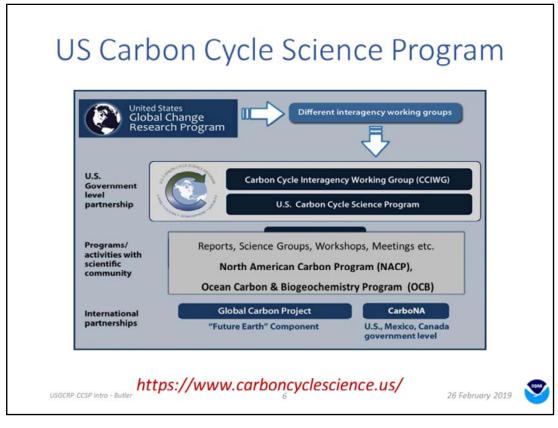

- I would like to give a brief overview of work of the Carbon Cycle Science program and NOAA's role in it.
 - > I've been on the CCIWG almost 20 years now.
 - Ken Mooney and Kathy Tedesco go back even further than that.
- This is a multi-agency program, but NOAA's role in it is significant in many ways
 - > NOAA is one of the dominant players in this effort
- SOCCR2 is our most recent product.
 - ➤ It is a major assessment of what we've learned over the past decade.
 - ➤ It is a tool for defining research needs and implementing solutions over the coming decade.

- You've all probably heard the following:
 - What's the big deal with CO2? It's oscillated in the past and so has climate. Why are we worried?
 - Besides, doesn't CO2 respond to temperature and not the other way around? Which is it?
- The answer is
 - Yes, CO2 has oscillated in the past with the ice ages, going roughly between 180 (ice age) and 280 (interglacial) ppm.
 - Yes, if temperature goes up, CO2 goes up, owing to increased respiration.
 - But the opposite is true, owing to the substantial warming effect of CO2 in the atmosphere.
 - The cycle does not change until acted upon from the "outside"
 e.g., the sun, Earth's orbit, or CO2 emissions.
 - o If there were no CO2 in the atmosphere, then Earth's temperature would be $^{\sim}0^{\circ}$ F (-18C).
- Note that Human Civilization has only existed during the last interglacial, a time when CO2 was settled between 260 and 280 ppm.
 - Agriculture was the driver of the evolution of civilization.
 - Hunting and gathering was a very inefficient way to make a living.
 - People had time to invent the wheel, build cities, write books, etc.

- Now, let's zoom in to the past 20,000 years.
 - During the last transition from glacial to interglacial, it took 10-15,000 years for CO2 to rise 100 ppm
 - ➤ Later, human emissions of CO2, mostly from fossil fuel burning, caused CO2 to rise 100 ppm in 100 years
 - 100 times faster than the last transition from glacial to interglacial.
- The world looked very different during the last glacial
 - ➤ E.g., glaciers up to a mile deep or more covered much of North America.
 - o Ecosystems had time to adjust.
- What will the world look like when Earth system finally adjusts to this recent increase?
 - Will civilization be able to survive the transition, which will happen much faster than the last?
 - The species extinction rate on the planet is extremely high right now.
 - The Holocene extinction is 1000 times the background rate since 1900

- Let's look closer . . .
 - ▶ Back ~2000 years and even before, all of Western Civilization progressed under a climate dictated by 280 ppm CO2 in the atmosphere.
 - Egyptians, Greeks, Romans, Ottomans, etc. drove civilization forward.
 - In Europe there were the Roman and Holy Roman Empires, the dark ages, the Reformation and Enlightenment.
 - And there were the Middle Warm Period and the Little Ice Age, which you can see in the CO2 record.
 - And then came the Industrial Revolution.
- Back 400 years (Reformation, Enlightenment, LaVosier, and Shakespeare)
 - > We see evidence of the Little Ice Age .
 - > We also see CO2 starting to rise around 1800.
 - o It rose 10 ppm between 1800 and 1900,
 - And 100 ppm in the next decade.

Origins of CCSP


- US Global Change Research Act (1990)
 - Established the US Global Change Research Program
 - Improve cooperation among Federal agencies and departments with respect to global change research activities.
 - Develop a US Global Change Research Plan, with triennial
 - Observations, Analyses, Predictions, Communication
 - Report Annually to the President and Congress
- Tans, Takahashi, and Fung, Science (1990)
 - > "Observational Constraints on the Global Atmospheric CO, Budget"
 - Identified a previously unknown, very large sink for atmospheric CO₂
 - Largely from NOAA data
 - Must be a terrestrial sink
 - Must be in the northern hemisphere

USGCRP CCSP Intro - Butley

- So, what we are doing to this planet is unprecedented and scary.
 - > It is an existential threat to civilization, especially because we know the CO2 we've already emitted into the atmosphere will remain for 1000s of years.
- Given this, the Global Change Research Act of 1990 required federal agencies to work together to observe, understand, assess, and predict change through research.
 - Report annually to the President and Congress.
- At the same time a paper in *Science Magazine* by Pieter Tans, Taro Takahashi, and Inez Fung made a discovery that revolutionized carbon cycle science
 - > There was a large, missing sink in the CO2 budget
 - > This sink had to be in the northern hemisphere
 - It was not an ocean source
 - o Leaving terrestrial systems as the likely sink
 - o Forests, grasslands, soils, etc.
- The implications of these findings were astounding

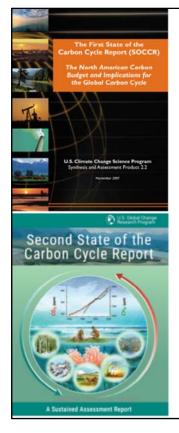
- So, when he USGCRP set up its plan, it established a number of interagency working groups.
 - One of them was the Carbon Cycle Working Interagency Working Group
 - Which governed the Carbon Cycle Science Program and quickly established two "sub programs within it.
 - North American Carbon Plan (NACP)
 - Ocean Carbon and Biogeochemistry Program (OCB)— (previously OCCP)

How CCSP Functions

(13 Agencies)

- CCSP Programs
 - North American Carbon Program
 - Ocean Biogeochemistry Program
 - > International Activities
- CCSP Plans
 - Carbon Science Plans (1998, 2011)
 - North America (2005)
 - > Ocean Carbon (2004)

- CCSP Implementation
 - Interagency Working Group (monthly)
 - Scientific Steering Group (semi-annual)
 - NACP Scientific Leadership Group (semi-annual)
 - OCB Scientific Steering Committee (semi-annual)
 - All-Investigators Meeting (biennial)
 - International Meetings & Events (e.g., CarbonNA, ICOS, Global Carbon Project)

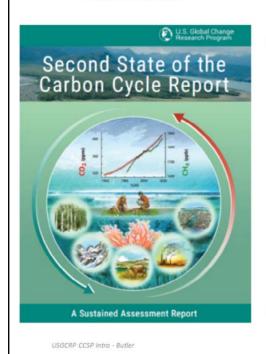

USGCRP CCSP Intro - Butler

7

26 February 2019

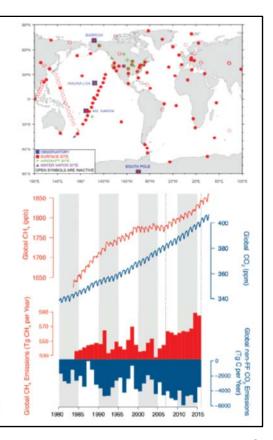
- The CCSP has met with considerable success for well over two decades, owing in good part to its organization and operation
 - Programs
 - > Plans
 - > Implementation

State of the Carbon Cycle Reports

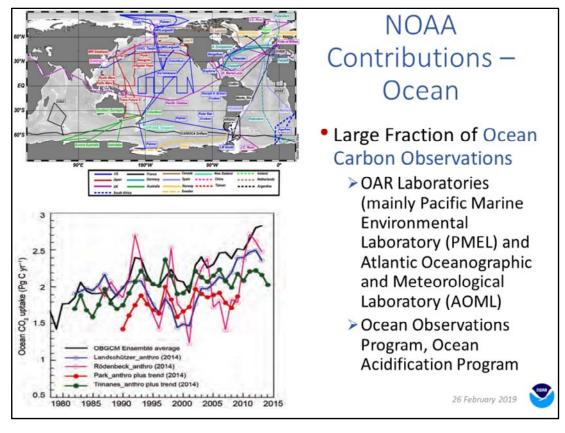

- First SOCCR became known as the "CCSP Synthesis and Assessment Report 2.2"
 - US Climate Change Science Program (same acronym)
 - Of the 21 S&A Reports, NOAA lead 7 of them.
- Goals of Second SOCCR
 - Update the statement of our understanding of the carbon cycle
 - > Includes the Human Element

- Many publications have come out of this program as agencies increasingly coordinate funding.
 - > Internally
 - > Externally through grants
- But also through assessments.
 - > The first SOCCR in 2007
 - Second SOCCR in 2018
 - Human element was highly emphasized in SOCCR2.

SOCCR2



- An update of how our understanding has improved since the first SOCCR report
- Four major sections
 - > Synthesis
 - Overview and North American Carbon Budget
 - Human Dimensions
 - Agriculture, urban systems, energy use, tribal considerations
 - State of Air, Land, Water
 - Atmosphere, forests, soils, grasslands, arctic, wetlands, coasts, oceans
 - > Consequences and Way Forward
 - Biogeochemical impacts
 - Science supporting decisions
- https://www.globalchange.gov /content/about-soccr-2
- Four major sections in the second report
 - > The first SOCCR emphasized natural systems.
 - Sections on the state of the land, water, air
 - Energy, transportation, waste received some attention.
 - SOCCR2 deals with natural systems, but provides a greater assessment of human activities
 - Synthesis
 - Consequences and Way Forward
 - The Human Element
 - o . . . In addition to the chapter on Air, Land, Water



- Atmospheric Observations of CO₂, CH₄, and other gases, along with their isotopomers (e.g., ¹⁴CO₂, ¹³CH₄)
 - OAR Laboratories (mainly Global Monitoring Division)
 - ➤ OAR Climate Program Office (mainly Atmospheric Composition, Chemistry, and Carbon Cycle Program – AC⁴)

USGCRP CCSP Intro - Butler

- In the US, NOAA Global Monitoring Division has been responsible for nearly all measurements of carbon cycle gases in the atmosphere.
 - > High quality, long term observations
 - ➤ The Climate Program Office has supported considerable process research as well.
- Top figure shows where long term observations are taken routinely.
- Bottom figure shows what we learn from atmospheric observations
 - > You've likely seen these in various forms over the years.
 - > Red is CH4, blue CO2, based on NOAA data.
 - Inversions of the trends and variability in CO2 and CH4 are used to invoke sources and sinks
 - E.g., subtract the increase in CO2 each year from the amount emitted to get natural sinks (blue bars)
 - For methane, similarly use its atmospheric lifetime and the observations to determine annual sources.
 - These put significant constraints on all terrestrial and ocean findings.

- Ocean measurements are more expensive and less frequent.
 - > It's a long term, internationally coordinated effort
 - > Blue lines in top figure are US observations
 - o 1/2 of those are from NOAA measurements
- The plot below shows the increase of CO2 in the ocean based on several computational approaches.
 - > They may differ in absolute amount, but the trends are pretty much the same.
 - ➤ CO2 in the ocean generally is keeping up with the atmosphere.
 - A good fraction of CO2 emitted each year is taken up by the ocean.

NOAA Contributions – AC⁴ Collaborations

- CarbonTracker Lagrange (FY11 FFO)
- CarbonTracker (FY13 FFO) 6 projects
- Urban Emissions (INFLUX, MEGACITIES Project, CO2USA Network) FY13, FY14, FY17 FFOs
- Methane emissions from oil & gas production (FY14 FFO)
- Methane sensor development (FY14 SBIR)
- National Academy of Science Methane Report (FY16)
- Satellite Data Assimilation (FY18 MAPP FFO) – 2 Projects
- 13C Analysis
- AirCore NESDIS interest for production of CO2 product

AirCore

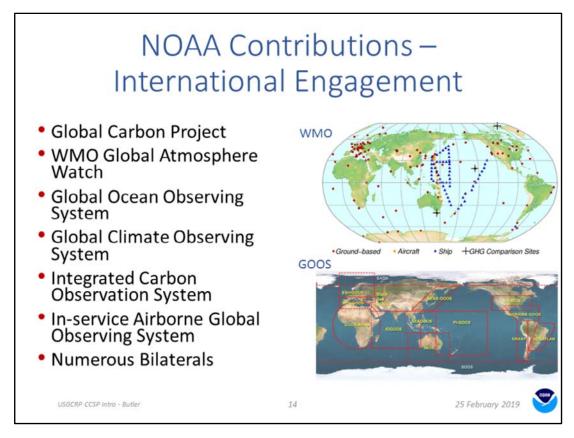
26 February 2019

USGCRP CCSP Intro - Butler

12

- The Climate Program Office's Atmospheric Composition, Chemistry, and Carbon Cycle Program (AC⁴) has funded many projects to support our understanding of the carbon cycle.
 - > Some of this is internal.
 - > Some is external.
 - Often, but not always, funding is coordinated with other agencies where practical.
- These touch on several categories.
 - > Understanding human and natural processes
 - Method development
 - Validation of satellite retrievals
 - > Assessments (e.g., Nat'l Acad Sci)

NOAA Contributions – Ocean Acidification



- Fosters, directs, & coordinates efforts to understand the impact of CO₂ on ocean acidity
 - > interdisciplinary research
 - > long-term monitoring program
 - > research supporting adaptation strategies
 - educational opportunities
 - > national public outreach
- Coordinates ocean acidification monitoring and impacts research
- Primary mission is to assess the vulnerability of the US to ocean acidification impacts

- Acidification of the ocean by increasing CO2 in the atmosphere is unquestionable
 - > There is only one way to stop ocean acidification
 - Stop emitting CO2 into the atmosphere.
 - Maybe there are ways to understand and deal with it
 - Thus the need for research
- The Ocean Acidification Program conducts numerous activities to understand the impact of CO2 on ocean acidity
 - Monitoring
 - Research
 - Coordination among agencies and internationally
 - Education
 - Outreach

- I could probably show a dozen slides on NOAA's international engagements to understand the carbon cycle.
 - There are many and they are varied in nature
 - > These include
 - Bilateral agreements to fill flasks or operate instruments in remote areas
 - Participation on ships from different programs in different nations
 - Participation in numerous international programs and their committees (acronym soup)
 - E.g., GOOS, IOOS, GAW, GCOS, AOPC, OOPC, GEO-Carbon, Global Carbon Project, ICOS, IAGOS, etc.
 - Collaboration in analysis and modeling
 - The international activities shown on this slide are only a few.

Contact Information, etc.

James H. Butler, Director Global Monitoring Division NOAA Earth System Research Laboratory Boulder, CO 80305 Ph: 303-497-6898

Email: james.h.butler@noaa.gov

GMD Website: www.esrl.noaa.gov/gmd
"Pumphandle" Movie Link (3.5 min): https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html

- I don't know if this is the time for questions, but if time is available, we can do some now.
 - > Or we can deal with questions after the next presentation.
 - ➤ I do note that if you found the first few slides interesting, they are taken from a brief movie developed by Andy Jacobson of NOAA's Global Monitoring Division.
 - The movie runs 3.5 min, but you pause anywhere to think about it.
- So now let me introduce the next speaker.

NOAA & SOCCR2 - Butler 26 February 2019

Next Speaker – Gyami Shrestha

- Director, U.S. Carbon Science Program (since 2011)
 - Co-led the development of SOCCR2, serving as lead editor, lead author & contributor
 - Directs the U.S. Carbon Cycle Science Program Office and Carbon Cycle Interagency Working Group (CCIWG)
- Previous Experience: research, management & consulting
 - Proposal Review Panel King Abdullah City for Science & Technology (2010-2011)
 - NAS Science and Technology Policy Fellow (2009) America's Climate Choices 'Advancing the Science of Climate Change' 2010 Report.
 - Center for Rural Technology (2001-2003) Decision-support tool development, Nepal & South Asia
- Education
 - Ph.D. Environmental Systems, University of California Merced (2011)
 - M.S. Soil Sciences and Water Resources, University of Wyoming
 - B.Sc. (Honors) Environmental Sciences, Kathmandu University
 - Executive Management/Leadership Certificates Georgetown Graduate School

USGCRP CCSP Intro - Butler

25

25 February 2019

- Her academic career has focused on Earth's environmental systems,
 - . . . completing her PhD at University of California, Merced.
 - She has experience in soil sciences, water, and ecosystems research.
 - > She understands how to work the interface between science and society and is skilled in management and leadership.
- Most importantly, with these skills and capabilities, she has overseen the US Carbon Cycle Science Program as its Director since 2011.
 - ➤ Given that this represents 13 agencies, ~200 scientists, and all their quirks, that is not a trivial task.
 - ➤ I have thoroughly enjoyed working with Gyami these past years and find her dedication, perseverance, and overall commitment to the mission to be inspiring and invigorating.