Carbon cycling across the land—ocean aquatic continuum of North America

Raymond Najjar

The Pennsylvania State University

David E Butman

University of Washington

Wei-Jun Cai

University of Delaware

Katja Fennel

Dalhousie University

Randy Kolka & Carl Trettin

US Dept. Agriculture Forest Service

Lisamarie Windham-Myers

US Geological Survey

OneNOAA Science Seminar, "From Science to Solutions: The State of the Carbon Cycle (SOCCR2) Seminar Series," March 19, 2019

Why is the carbon cycle important?

- Regulates the abundance of the most important non-condensable greenhouse gases: carbon dioxide and methane
 - The natural greenhouse effect warms the planet by 33 °C
- Carbon dioxide stimulates plant growth
- Carbon dioxide acidifies the ocean
- Carbon is the main currency for quantifying the productivity of the biosphere, including
 - Forests
 - Fisheries
 - Agriculture

In the traditional view of the global carbon cycle, land and ocean are not connected

In the modern view of the global carbon cycle, land and ocean are <u>linked</u> via an aquatic continuum

Second State of the Carbon Cycle Report

https://www.globalchange.gov/content/about-soccr-2

A difficult problem ... boundaries are messy

SOCCR2 aquatic chapters used a combination of literature review, data synthesis, and models (processbased, inversion, and empirical)

Coastal ocean
domain defined
as the Exclusive
Economic Zone—
typically 200
nautical miles
from shore

Total Carbon Budget of North American Aquatic Ecosystems (Tg C yr⁻¹)

Large compensating exchange fluxes with atmosphere: 269 Tg C yr⁻¹ uptake, 257 Tg C yr⁻¹ release

Large lateral fluxes to inland waters, estuaries, the coastal ocean, and the open ocean

Large burial: 282 Tg C yr⁻¹

There have been major advances in the North American aquatic carbon budget since SOCCR1

Putting the land—ocean aquatic continuum of North America into context

Other Chapter 13 highlights

- Wetland methane emissions offset about 1/3 of wetland CO₂ uptake
- North America wetlands about 1/3 of global wetland emissions
- Current rate of wetland loss much less than historical rates, with restoration and creation nearly offsetting natural wetland loss
- Created and restored wetlands are not functionally equivalent to natural wetlands

Other Chapter 14 highlights

Future research should

- Quantify methane emissions
- Better represent storms and other extreme events
- Standardize measurement techniques and protocols, similar to what has been done by the International Ocean Carbon Coordination Project

Other Chapter 15 highlights

Future research should

- Understand responses to accelerated sea level rise
- Map tidal wetland and estuarine extent
- Quantify carbon dioxide and methane exchange in large, undersampled, and rapidly changing regions

Other Chapter 16 highlights

- The net uptake of atmospheric CO₂ by the coastal ocean is driven primarily by high-latitude regions
- Low pH conditions occur in Arctic and North Pacific coastal waters and have been exacerbated by anthropogenic CO₂
- Expanded monitoring, synthesis, and modeling required to provide more reliable coastal carbon budgets and future projections of the coastal ocean

What have we learned?

- Aquatic systems play a prominent role in the North American carbon budget
- Exchanges with the atmosphere are large but offsetting (\pm 200 300 Tg C yr⁻¹)
- Lateral transfers and burial are large and exclusive to aquatic systems:
 - Lateral transfer ≈ 500 Tg C yr⁻¹ to inland waters and ≈ 100 Tg C yr⁻¹ to estuaries, coastal waters, and the open ocean
 - Burial ≈ 300 Tg C yr^{-1}

More information

- About me:
 - Raymond Najjar
 - rgn1@psu.edu
 - http://www.met.psu.edu/people/rgn1
 - -814-863-1586
- About the 2nd State of the Carbon Cycle Report (SOCCR2):
 - https://www.globalchange.gov/content/ about-soccr-2

