All About Carbon: Overview of the State of the Carbon Cycle Report

US Global Change Research Program

- 1990 Global Change Research Act
- Develop and coordinate "a comprehensive and integrated research program to assist the Nation and the world to understand, assess, predict, and respond to human-induced and natural processes of global change."
- Involves 13 Federal agencies

SOCCR-2 CSSR

https://www.globalchange.gov/
content/about-soccr-2

880 pp

https://science2017.globalchange.gov/

477 pp

Executive summaries, highlights, reports in brief provide short & accessible summaries

Reports are *Assessments*

- SOCCR-2 involved over 200 authors from government, national labs, universities, & non-profits from US, Canada, Mexico
- Surveyed peer-reviewed scientific literature (specific standards following the Information Quality Act)
- Authors make assessments (judgements) on the content and quality of available information

Confidence Level

Very High

Strong evidence (established theory, multiple sources, consistent results, well-documented and accepted methods, etc.), high consensus

High

Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus

Medium

Suggestive evidence (a few sources, limited consistency, models incomplete, methods emerging, etc.), competing schools of thought

Low

Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor documentation and/or methods not tested, etc.), disagreement or lack of opinions among experts

Likelihood

Very High

≥ 9 in 10

Likely

≥ 2 in 3

As Likely As Not

≈ 1 in 2

Unlikely

≤ 1 in 3

Very Unlikely

≤ 1 in 10

Statistical Uncertainties

**** 95% certain within 10%

**** 95% certain within 25%

*** 95% certain within 50%

** 95% certain within 100%

* uncertainty > 100%

These reports do not provide policy recommendations

• In accordance with the Federal Advisory Committee Act of 1972 "objective and accessible to the public" by formalizing the process for "establishing, operating, overseeing, and terminating" committees

SOCCR2 Team Structure and Interactions

Simplified Carbon Cycle

North American Carbon Budget in SOCCR-2

Statistical Uncertainties

***** 95% certain within 10%

**** 95% certain within 25%

*** 95% certain within 50%

** 95% certain within 100%

* uncertainty > 100%

Teragrams (1,100,000 tons) of carbon per year Second State of the Carbon Cycle Report

Building the budget from ecosystems

Carbon dioxide and methane global trends

Second State of the Carbon Cycle Report

Fossil fuel emission trends in North America

Second State of the Carbon Cycle Report

Decreasing energy emissions with increasing U.S. gross domestic product (GDP)

Important changes in carbon emissions across North America

- Transition from coal to natural gas
- Increases in renewables & alternative fuels
- Replaced aging infrastructure including pipelines & power plants

TVA Bull Run coal-fired power plant, with old & new stacks, retiring 2023. *Oak Ridge, TN*

What else have we done?

- Increased efficiencies of buildings
- Increased transportation alternatives such as biofuels & public transportation
- More stringent CAFE standards

Natural gas use increasing in US

Second State of the Carbon Cycle Report

Renewables making inroads in North America

What else can we do?

- 1. Decrease emissions
 - Decrease use
 - Increase efficiencies
 - Increase renewables
- 2. Carbon capture
- 3. Negative emissions
 - Remove previously emitted CO₂

Getting serious:
Observed temperature increases

Surface Temperature Change

It is getting hotter

http://www.climatecentral.org/gallery/graphics/the-10-hottest-global-years-on-record

How much worse will it be?

- RCP = Representative concentration pathways
- Represents a range of possible emissions outcomes
- Widely used (eg, IPCC)

Projected Global Temperatures

Why the uncertainty?

Second State of the Carbon Cycle Report

Role of Permafrost soils

Northern latitudes store substantial soil carbon

Difference between mean annual Arctic surface air temperatures from 2001 to 2015

Second State of the Carbon Cycle Report

Deep permafrost temperature over the last 60 years

Second State of the Carbon Cycle Report

Projected carbon changes by 2050

Second State of the Carbon Cycle Report

1984 Sea Ize Age 8-1 1-2 2-3 3-4 45 Years Perennial Sea Ice Area by Age Millions 1984 25 20 1.3 1.0 0.5 Age 1-2 2-3 3-4 45

Sea Ice Extent

Climate Science Special Report

Projected Changes in Average Annual Temperature

Change in Temperature (°F)

10 12 14 16 18

Historical and Projected Global Mean Sea Level Rise

Climate Science Special Report

Ocean chemistry measurements

Second State of the Carbon Cycle Report

Second State of the Carbon Cycle Report

Summary

- Over half of North America's fossil emissions enter the atmosphere, but the land and coastal oceans continue to take up significant carbon
- Energy-related carbon emissions in North America have decreased due to fuel switching, increased efficiencies, renewables, etc
- Without a loss of GDP!

Summary

- Carbon dioxide & methane concentrations continue to increase globally, with concomitant increases in temperature
- The Arctic experiences greater temperature increases than low latitudes
 - Significant potential for liberating substantial soil carbon, compounding the effects of fossil emissions
- Effects are already being felt record-breaking temperatures, decreases in ocean pH, increases in sea level, more "nuisance" flooding

What are the cost/benefits?

- Estimated cumulative cost from 2015 to 2050 for the US to reduce emissions by 80% relative to 2005 levels (an amount considered to be in line with a 2° C goal) is ~ \$1 to \$4 trillion (US\$2005)
- The total annual cost in 2050 alone for climate change damages across health, infrastructure, electricity, water resource, agriculture, and ecosystems in the US is estimated at ~\$170 to \$206 billion (US\$2015)

Thank you!

Melanie A Mayes mayesma@ornl.gov

State of the Carbon Cycle Report https://www.globalchange.gov/content/about-soccr-2

Climate Science Special Report https://science2017.globalchange.gov/

Atmosphere 160*** 82*** 27*** 247** 10** Other **Terrestrial** 105 **** Sources 491** Open **Estuaries Tidal Inland Terrestrial** Coastal Ocean Wetlands Ocean Wetlands Waters 16** 106*** 151** $\Delta = 50***$ $\Delta = -2**$ $\Delta = 44***$ **16***** **48***** 155** **65**** 5** 9**

Sediments or Soil

Second State of the Carbon Cycle Report